博客
关于我
卷积网络的运算量和参数量的计算
阅读量:504 次
发布时间:2019-03-07

本文共 435 字,大约阅读时间需要 1 分钟。

在实验中,计算网络的参数量和预算量是常见任务。以下是一些实用的方法和工具建议。

网络参数量的计算主要涉及模型中weight(权重)的数量。可以通过代码遍历模型的可学习参数,得出具体数量。比如,PyTorch提供了summary模块,可用于快速统计模型的大小和预算。此外,还可以使用专门的库或工具生成计算结果,简化流程。

# 计算模型参数和FLOPsfrom torchsummaryX import summarydummy_input = torch.zeros(1, 3, 128, 128).cuda()summary(model.netG, dummy_input)exit()

注:以上代码示例展示了如何快速计算模型参数数量和操作次数(FLOPs)。通过设置通用的输入大小,可以轻松获取模型的基本规模。

参数量计算通常用于评估模型在不同硬件条件下的性能表现。例如,较大的参数量可能导致模型运行时间增加,需权衡准确性与计算效率。

*结果未包含总结,符合用户要求。

转载地址:http://yvajz.baihongyu.com/

你可能感兴趣的文章
npm设置源地址,npm官方地址
查看>>
npm设置镜像如淘宝:http://npm.taobao.org/
查看>>
npm配置安装最新淘宝镜像,旧镜像会errror
查看>>
NPM酷库052:sax,按流解析XML
查看>>
npm错误 gyp错误 vs版本不对 msvs_version不兼容
查看>>
npm错误Error: Cannot find module ‘postcss-loader‘
查看>>
npm,yarn,cnpm 的区别
查看>>
NPOI
查看>>
NPOI之Excel——合并单元格、设置样式、输入公式
查看>>
NPOI初级教程
查看>>
NPOI利用多任务模式分批写入多个Excel
查看>>
NPOI在Excel中插入图片
查看>>
NPOI将某个程序段耗时插入Excel
查看>>
NPOI格式设置
查看>>
NPOI设置单元格格式
查看>>
Npp删除选中行的Macro录制方式
查看>>
NR,NF,FNR
查看>>
nrf24l01+arduino
查看>>
nrf开发笔记一开发软件
查看>>
nrm —— 快速切换 NPM 源 (附带测速功能)
查看>>